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A short note on the reattachment length for BFS problem
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SUMMARY

The standard backward-facing step �ow problem is solved for steady state laminar case using stream
function-vorticity method. The steady state results are obtained as the asymptotic solution of the transient
formulation. The primary reattachment length is studied and the discrepancy in the v velocity is reported.
A method for determining appropriate locations for comparison is proposed. The energy equation is
solved and found to be in good agreement with benchmark results. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Fluid �ow in a backward-facing step (BFS) geometry is one of the most important benchmark
problems used in computational �uid dynamics (CFD). It has an out�ow boundary condition,
�ow separation, reattachment and several recirculation zones. A schematic diagram of the
BFS problem is shown in Figure 1. Many authors have studied this benchmark problem and
compared their results. However, amongst these studies, there are variations of geometry,
types of out�ow boundary conditions and numerical techniques to solve the problem.
The earliest signi�cant work is presented by Armaly et al. [1]. They have considered

the step height and inlet height as 4.9 and 5:2 cm, respectively. The domain length in the
downstream direction is considered as 20 cm, su�cient enough for the �ow to be fully de-
veloped. They made both experimental as well as a two-dimensional (2D) numerical study
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Figure 1. Schematic diagram and boundary conditions in a BFS problem.

of this problem for various Reynolds numbers (Re). They found a good agreement between
numerical and experimental results up to Re=400. After this Re, the numerical results started
to deviate from the experimental results. They reported that this discrepancy might be due
to the loss of two dimensionality in the experiments. The formation of lower and upper wall
vortices and their lengths are described in detail. They concluded that the �ow would be
laminar up to Re=1250.
Kim and Moin [2] have tested the 3D BFS problem using a fractional-step method. For

the intermediate velocity �eld, suitable boundary conditions are derived and tested. Sohn [3]
used FIDAP, the commercial code, to study a few laminar and turbulent �ow problems. He
reported results of the BFS with and without STU (streamline upwinding).
Gartling [4] studied the problem and made benchmark results for Re=800. The expansion

ratio is de�ned as the ratio of total height of the channel to the step height. Armaly et al. [1]
used an expansion ratio of 2.061 whereas Gartling [4] and others have used a value of 2.
Results presented in Reference [4] included the horizontal velocity component for di�erent
downstream locations. It was shown that the streamwise velocity gradients were not zero at
the outlet but a constant normal stress condition can be a good approximation as an out�ow
boundary condition. This work was important from the point of view of a new out�ow
boundary condition.
The same BFS problem is studied by Dyne and Heinrich [5], and also by Choudhury

[6]. In addition to the �uid �ow solution, they have solved the energy equation. Dyne and
Heinrich [5] investigated the Nusselt (Nu) number distribution along the wall. It approaches
fully developed value in the downstream direction. Comini et al. [7] solved the incompressible
2D �ow BFS problem by a stream function-vorticity formulation using �nite element method
(FEM); they have carried out the computation without upwinding.
Choudhury [6] has reported the reattachment length as 5.8, and showed his u velocity com-

ponent is in good agreement with Gartling [4] at the downstream location x=7. Barton [8]
studied the e�ect of the inlet channel length before the expansion in the BFS problem and
predicted that at low Re, the reattachment length is reduced due to the channel presence.
Davidson and Nielsen [9] presented the role of the expansion ratio in determining the reat-
tachment length for various Re. Bhattacharjee and Loth [10] reported 2D DNS results for
the BFS problem as a validation for their code to solve the wall jet �ow problem. They
reported a primary vortex reattachment length as 5.7. The domain length was 40 times the
step height in this study, whereas the benchmark solution of Gartling [4] used 60 times the
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step height. They have used an extrapolated boundary condition at the exit and reported a
reattachment length that is more than a channel height less than that of Gartling [4]. It is
worthwhile to point out that Barton [8] also used a shorter domain of 32 times the step height
with an extrapolated boundary conditions at the exit; the reported attachment length is close
to Gartling [4]. Biswas et al. [11] have reported 2D as well as 3D BFS results. They reported
the formation of Mo�att eddies as Re approaches zero.

2. PURPOSE OF THIS STUDY

The BFS �ow at Re=800 received attention after Kaiktsis et al. [12] reported that �ow
does not have a stable solution above Re ∼=700 and the �ow undergoes a second bifur-
cation at Re=800. But Gresho et al. [13] concluded that at Re=800 �ow is steady and
stable solutions are possible. It has been observed that a large number of authors have
solved this problem to validate either a new method, new code or new boundary con-
dition. It is found that there are discrepancies in the reattachment length of the primary
vortex reported by many authors [1–4, 6, 10, 14], particularly for Re=800 (Table I). This
is a re�ection of comparing the momentum and energy solutions at di�erent downstream
locations with the benchmark values of Gartling [4] and Dyne and Heinrich [5], respec-
tively. This discrepancy can lead to confusion for the new researchers to proceed further
with either their method or code. For validation, some authors [7] have used a compari-
son at relative location instead of the absolute location. The reattachment location at the
lower wall for Comini et al. [7] is 6.06. They have compared the results with Gartling
[4] at x=6:96 instead of x=7. Also it was noticed that although the downstream u
velocity matched with the benchmark results of Gartling [4], the v velocity had a large
discrepancy with Gartling [4] and Dyne and Heinrich [5] at x=7 (Figure 7(b)); the dif-
ference was 68.24% at y=0:5. The present study is aimed at understanding the reasons
behind this deviation and the role of reattachment length as a validation parameter in the step
�ow problem.

Table I. Comparison of primary vortex reattachment length.

Author x1=step

Armaly et al. (experiment) [1] 14.40
Osswald et al. [14] 11.00
Kim and Moin [2] 12.00
Sohn [3] 11.60
Gartling [4] 12.20
Dyne and Heinrich [5] 11.85
Choudhury [6] 11.60
Comini et al. [7] 12.12
Barton [8] 12.03
Bhattacharjee and Loth [10] 10.40
Present 11.81
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3. NUMERICAL PROCEDURE

The geometry and inlet condition considered here are identical with Gartling [4]. The gov-
erning equations for incompressible laminar �ow are solved with a stream function-vorticity
formulation. At exit the streamwise velocity gradients are assumed to be zero [15]. The tran-
sient form of the non-dimensional governing equations are

stream function equation

∇2 = − ! (1)

vorticity equation
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where  is the stream function, u= @ =@y; v= − (@ =@x); !=(@v=@x) − (@u=@y); � is
the non-dimensional temperature, Pr=Prandtl number. The solution approaches steady state
asymptotically. The computational domains considered here are clustered cartesian grids.
The parabolic equation (2) is solved by an alternate direction implicit (ADI) method [15].

The Poisson equation (1) is solved explicitly by a �ve-point Gauss–Seidel method. With
known velocity values Equation (3) is solved by the ADI method. A constant time step of
0.001 is used for the entire calculation.

4. RESULTS AND DISCUSSION

For the BFS problem, grids are clustered near the high gradients zone (Figure 2). Since grids
in both directions are clustered, a systematic grid independence study is carried out for the
y-direction as well as the x-direction. In the y-direction di�erent grids systems are tested
(Table II) and variation in reattachment length is less than 1% for the third and the fourth

X
0 0.5 1 1.5

1

0.5y

Figure 2. Part of the typical grids used for BFS.
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Table II. Grid independence study: Re=800.

Grids in the y-direction x1=h

151× 41 10.248
151× 61 11.168
151× 81 11.812
151× 101 11.825
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Figure 3. Primary vortex reattachment length for various Re.

grid densities; 81 grids in the y-direction is chosen for the entire study. A similar study is
carried out for x-direction with 101× 81; 131× 81; 151× 81 and 201× 81 grid points and it is
concluded that 151× 81 grid points could be used for all the calculations. For the range of
1006Re6 800, results are computed and the primary vortex reattachment length is compared
(Figure 3) with those of other authors. The reattachment point is determined by interpolation
of !. Most of the researchers have studied the Re=800 case only. Here di�erent line patterns
are used to show the present results, while di�erent symbols are used to show the benchmark
values. The velocity vectors along with the primary vortex on the bottom wall is shown in
(Figure 4(a)) and the top wall vortex is shown in (Figure 4(b)). Also for Re=800, the mo-
mentum and energy solutions at various downstream locations are compared with the bench-
mark results. For the u velocity component (Figure 5(a)), good agreement with benchmark
results [4, 5] is demonstrated. Also the energy solution is in good agreement (Figure 5(b))
with Dyne and Heinrich [5]. Table I shows the primary vortex reattachment length reported
by few authors.
The upper wall vortex formation begins above Re=400. While Re increases further, the

vortex moves in the downstream direction and its length is also increased. The v velocity
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Figure 4. Velocity vector and stream trace plot, Re=800: (a) bottom wall
vortex; and (b) upper wall vortex.
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Figure 5. Comparison of numerical solution with benchmark results. O-Gartling, �-Dyne and
Heinrich and present: — x=3, - - - x=7, : : : x=15: (a) u velocity; and (b) temperature.

component at Re=800 is compared with the benchmark results (Figure 7). The discrepancy
between Gartling [4] and Dyne and Heinrich [5] is to be noted. The v velocity component
has a large discrepancy among the present investigation, [4, 5] at downstream locations; in
particular, at x=7 it is quite large (Figure 7(b)). Far downstream, the discrepancy is reduced
(Figure 6(b)). Thus, it can be concluded that the discrepancy is large just after the primary
vortex reattachment. The discrepancy in the v velocity does not signi�cantly a�ect the energy
solution (Figure 5(b)). Barton [8] has concluded that the variation in reattachment length may
arise due to the presence of the upstream channel which may be on the order of step height=2,
whereas for Bhattacharjee and Loth [10], the reattachment length is lower by 14.74% compared
to Gartling [4] which is more than a channel height. Gartling [4] reported the velocity pro�les
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Figure 6. Comparison of v velocity with benchmark results. O-Gartling, �-Dyne and
Heinrich: (a) x=3; and (b) x=15.
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Figure 7. Comparison of velocity at x=7 with benchmark results. O-Gartling, �-Dyne
and Heinrich: (a) u velocity; and (b) v velocity.

results at x=7 which is 0:9H downstream to his reattachment point (x1 = 6:1). Since variations
in primary vortex reattachment length are common to most reported solutions (Table I), a
method for comparing the velocity pro�les in a suitable way has to be identi�ed. In the present
solution the reattachment length is 5.905. Instead of proportionate method of Comini et al.
[7], a shifted location method is used here. Relative to Gartling [4], a value of 0:9H is added
to the reattachment length, i.e. 5.905, and thus the results are at 6.805. The present results are
then compared at this location with the x=7 location results of Gartling [4] (Figure 7(b))
which show good agreement. Both u and v have good agreement in this way (Figure 7(b)).
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Figure 8. v velocity at x=6:805.
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Figure 9. Vorticity at downstream location.

For various Re, the v velocity component is compared at x=6:805 location (Figure 8). At
Re=100, the �ow is fully developed. Re=500, v increases and with further increase in Re,
it becomes negative signifying the appearance of an upper wall vortex. The authors strongly
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feel that the correct prediction of the v velocity is signi�cant for capturing accurately the
primary vortex reattachment length. The discrepancy in the v velocity component is less
signi�cant from the heat transfer point of view, because the absolute comparison of � is
in good agreement with Dyne and Heinrich [5] (Figure 5(b)). This may be due to the less
convective e�ect contributed by the v velocity. The vorticity has been compared with Gartling
[4] at x=7 and 15 and is shown in Figure 9. Unlike the v velocity distribution, for x=7, the
present computed vorticity is very close to Gartling’s [4] results. However, with the proposed
shift to x=6:805, the lines are overlapping with each other. For x=15, it is observed that
there is no need of the adjustment.

5. CONCLUSION

The steady state backward-facing step benchmark problem is solved as the asymptotic solution
of the time-dependent stream function-vorticity formulation. The discretization has been done
by ADI the method with centred space. It is observed that clustering of grids allows use
of a lesser number of grid points. The conventional upwinding is not used for the solution
procedure. The reattachment length obtained for Re=800 is 3.2% less compared to Gartling
[4]. Immediately after reattachment of the primary vortex, i.e. at x=7, the u velocity predicted
is found to match with Gartling [4]. However, the predicted v velocity has a large discrepancy.
It is proposed to shift the location for comparison, and thus the predicted v velocity is found
to match with Gartling [4]. For locations x=3 and 15, it is observed that the computed
results compared well with Gartling [4] and no such shift is required. This behaviour is not
as pronounced for the vorticity as it is practically matching at x=7. The authors feel that the
discrepancy in the v velocity leads to the discrepancy in the primary vortex reattachment. It
has been found that within the limit of variation of reattachment length in the present study,
there is no e�ect on the temperature distribution for the heat transfer case considered.
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